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Abstract

A spin-connection gravitational gauge theory with a spin-affine connection
as its fundamental dynamical variable is suggested in the framework of
vierbein formulation. The functional integral approach to the interaction
between complex scalar matter fields and a heavy intermediate coupling field
is considered, where the Einstein field equation appears as a first-integral
solution to the low-energy spin-connection gauge field equation of Yang–Mills
type. The most intriguing characteristics of the present scheme include: (i) the
gravitational constant originates from the low-energy propagator of the heavy
coupling field that mediates the gravitation between the matter fields and the
spin-connection gauge field; (ii) the large cosmological constant resulting from
the quantum vacuum energy actually makes no gravitational contribution since
the spin-connection gauge field equation is a third-order differential equation
of the metric, and an integration constant of the first-integral solution serves
as an effective cosmological constant that would cause the cosmic accelerated
expansion. The present mechanism for interpreting the nonzero but small
cosmological constant provides a new insight into the cosmological constant
problem.

PACS numbers: 04.20.Cv, 04.20.Fy, 04.50.+h

1. Introduction

Though much experimental evidence has confirmed the validity and reliability of Einstein’s
general relativity (GR) in characterizing gravitation as a gauge interaction, describing the
gravitational coupling of matters as well as interpreting cosmic evolution, physicists never stop

1751-8113/09/155401+19$30.00 © 2009 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/1751-8113/42/15/155401
mailto:jqshen@coer.zju.edu.cn
mailto:jqshencn@yahoo.com.cn
http://stacks.iop.org/JPhysA/42/155401


J. Phys. A: Math. Theor. 42 (2009) 155401 J Q Shen

attempting to establish new generalized gravity theories in order to unify gravity and other
gauge fields [1–3], or to suggest modified gravity theories for interpreting new anomalous
experimental phenomena [4–6]. These included, e.g., various versions of gravity with torsion
(e.g., teleparallel gravity) [2, 7–10], modified Hilbert–Einstein theory (e.g., 1/R-correction
gravity) [3], coframe geometry and gravity [10, 11], and a variety of gauge approaches
to gravitation [6] (including the Poincaré gauge theory [12, 13] and the metric-affine gauge
theory of gravity [14]). It should be pointed out that most of these investigations were proposed
based on the metric formalism, where the metric serves as a basic dynamical variable of the
gravity theories. However, both the theoretical requirements and the recent observational
results may have given a hint towards new field theories of gravitation with new dynamical
variables. Take the gravitational gauge theory for example; we may need a proper fundamental
dynamical variable for reformulating the gravity as a Yang–Mills type. The connection and
the dynamical variable in the Yang–Mills gauge theory are the same quantity, while in GR,
the connection (Levi–Civita connection) and the dynamical variable (metric) are not the same
quantity, and then the field equation in general relativity is not a Yang–Mills type equation. In
other words, the reason why the local Lorentz symmetry in the formulation of both the metric
and Levi–Civita connections does not allow us to describe the gravitation as a Yang–Mills
type gauge interaction, is because these two gauge interactions are formulated in different
languages: specifically, GR is constructed using the Levi–Civita connection (in terms of the
metric), while the Yang–Mills gauge field is described using a non-Abelian affine connection,
which can actually be expressed in terms of the so-called ‘Yang–Mills vielbein’. Likewise,
there may exist a fundamental dynamical variable that can also be constructed in terms of
the vielbein (in four dimensions we would call it a vierbein). This is one of the topics
addressed in this paper. On the other hand, some recent astrophysical observations (e.g.,
Type Ia supernova observations [15]) showed that the large scale mean pressure of our present
universe is negative suggesting a positive but small cosmological constant, and that the universe
is therefore presently undergoing an accelerated expansion [15]. This means that we need a
proper mechanism to interpret the nonzero but small cosmological constant. Whereas, the
theoretically predicted cosmological constant that results from e.g. quantum vacuum energy
is almost divergent (at least larger than the observed cosmological constant value by more
than 120 orders of magnitude). We believe that, in order to resolve the present problem,
we should elucidate the physical meanings of the cosmological constant from other possible
aspects and new insights, and then interpret the cosmological constant problem by using new
dynamical equations with new dynamical variables of gravitation (the new dynamics should
certainly be reduced to the Einstein gravity under certain conditions). One such dynamics is
the Yang–Mills type gravity theory, where the spin-affine connection (or the spin connection,
for brevity) can serve as a fundamental dynamical variable for the gravitational gauge field.

The gravitational Lagrangian densities of the present Yang–Mills type gravitational field
are the squares of the curvatures (including the Riemannian curvature and the scalar curvature).
Here, the gravitational gauge field curvature (e.g., the Riemannian curvature in the vierbein
formulation) is of the form of Yang–Mills type, which can be expressed explicitly in terms of
the spin-affine connection. In a word, the present formalism of gauge field theory of Yang–
Mills type for the gravitational interaction preserves a spin-connection local Lorentz-group
gauge invariance. We will show that this scheme would be a new way to obtain the Einstein
field equation of gravitation. Obviously, such a dynamics differs from the way based on the
Hilbert–Einstein action, where the metric serves as the dynamical variable.

The most remarkable results of the present scheme include: (i) the Einstein field equation
appears as a first-integral solution to the low-energy gravitational gauge field equation of spin-
affine connection. In this sense, the Einstein gravity theory could be viewed as a low-energy
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phenomenological (effective) field theory of the present spin-connection gauge field theory;
(ii) we suggest a scheme of matter–gravity interaction (mediated by a heavy intermediate
coupling field) to formulate a theory of gravitation with a dimensionless fundamental coupling
constant, and the Newtonian gravitational constant results from the low-energy Green function
of the heavy coupling field whose contribution has been integrated in the vacuum–vacuum
transition amplitude of the path integral approach. Therefore, the physical essence of the
Newtonian gravitational constant is the low-energy propagator of the heavy intermediate
coupling field (proportional to the mass square of the heavy coupling field); (iii) the
cosmological constant due to quantum vacuum energy makes no gravitational contribution
since the spin-connection gravitational field equation is a third-order differential equation of
metric (the gravitation of the almost divergent cosmological constant caused by the quantum
vacuum fluctuation is one of the puzzles in the cosmological constant problem. But now in the
prescription of spin-connection gauge field theory, this puzzle could be removed). Besides, an
equivalent cosmological constant that appears as an integration constant of the first-integral
solution can naturally interpret the observed cosmological constant value that is close to the
critical density of the universe.

This paper is organized as follows: we shall first construct a gravitational Lagrangian
density by using the local Lorentz-group gauge symmetry, and obtain the variation of the
gravitational action, where the spin connection is a dynamical variable. Then we introduce a
heavy intermediate coupling field that mediates the gravitational interaction between the scalar
matter field and the spin-connection gauge field, use the path integral approach to the matter
and heavy intermediate coupling field, and derive a low-energy effective action of the matter
field. In the low-energy case, the Einstein field equation can therefore be obtained via
the variational principle from the low-energy effective action (where the heavy intermediate
coupling field has already been integrated in the vacuum–vacuum transition amplitude). The
present formalism of spin-connection gravitational gauge field theory provides us with new
insights into the essence and the physical origins of both the gravitational constant and the
cosmological constant.

2. Spin-connection gauge field theory and gravitational Lagrangian

As is well known, in the formulation of metric and Levi–Civita connections, the dynamical
variable of gravitational field is the metric. We would, however, choose the spin connection as
a fundamental dynamical variable for the gravitational field, and it will be shown that GR (in
the formulation of vierbein and spin connection) would then become a Yang–Mills type gauge
field theory. The Lagrangian formalism of spin-connection gauge theory of gravitation (with
the Local Lorentz-group gauge invariance) will be suggested, where the candidates for the
gravitational Lagrangian density are the local gauge-group invariant quadratic in curvatures.

In order to suggest a Yang–Mills type field equation of gravitation, we should first
reformulate the Riemannian geometry and torsionless gravity using the formulation of vierbein,
where the vierbein fields satisfy the relations gμν = ϑμ

rϑνr and δμ
ν = ϑμ

rϑν
r . Here,

the Greek and Latin indices denote the Einstein local coordinate indices and the spacetime
indices (Lorentz coordinate indices) of the local inertial frame, respectively. In this paper, we
choose the metric sign convention (+ − −−). In the Riemannian geometry (curvature-only
torsion-free theory), the Levi–Civita covariant derivatives of the vierbeins are defined through
∇λϑνr = ∂λϑνr −ϑσr�

σ
λν and ∇λϑ

ν
r = ∂λϑ

ν
r +�ν

λσϑσ
r . Then it follows that the Levi–Civita

affine connection can be expressed in terms of the vierbein fields. Take the Christoffel symbol
�μ

λν for example, it can be written as �μ
λν = ϑμr∂λϑνr + Sμ

λν , where Sμ
λν = ϑνr∇λϑ

μr .
Here, ∇λ denotes the Levi–Civita covariant derivative.
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Now we rewrite the Riemannian curvature tensor (using the vierbein formulation) in
terms of the spin-connection gauge field. By using the definition of Levi–Civita covariant
derivative, the second-order covariant derivative of the vierbein ϑτ

r yields a relation
ϑτ

r ;μ;ν − ϑτ
r ;ν;μ = ϑβ

rRβ
τμν . This leads to

ϑβ
rRβ

τμνϑ
τs = (

ϑτ
r ;μ;ν − ϑτ

r ;ν;μ
)
ϑτs. (1)

We define a gauge field tensor (�μν)
rs ≡ ϑβ

rRβ
τμνϑ

τs , and then we have

(�μν)
rs = (

ϑτ
r ;μ;ν − ϑτ

r ;ν;μ
)
ϑτs. (2)

In the vierbein formulation of torsion-free gravity, one can show that the gauge field tensor
can be expressed as

(�μν)
rs = 1

i
(∇μŠν − ∇ν Šμ − i[Šμ, Šν])rs, (3)

or �μν = (∇μŠν −∇ν Šμ − i[Šμ, Šν])/i. Here, the Hermitian spin-affine connection (the Latin
indices r, s are viewed as the matrix indices) is defined as (Šμ)rs ≡ iSr

μ
s = iϑα

rSα
μ

βϑβ
s .

It follows that a Hermitian spin-connection gauge field strength (curvature) can be defined as
�̌μν = i�μν . Thus, one can have �̌μν = ∇μŠν −∇ν Šμ − i[Šμ, Šν] whose component (matrix
element) is given by

(�̌μν)
rs = (∇μŠν − ∇ν Šμ − i[Šμ, Šν])rs . (4)

This is a spin-connection non-Abelian gauge field strength.
We have so far focused on establishing the important relations in the vierbein formulation

of gravitation. Now we are in a position to construct the Lagrangian densities for the
gravitational field (spin-connection gravitational gauge field) by applying the gauge approach
to the gravitational interactions.

In the tensor representation of the Lorentz group in four-dimensional spacetime, there
are six group generators (Jpq)

rs , where the superscripts r, s are the matrix indices, and the
subscripts (pq) are considered to be the number index of the six group generators, i.e., (pq)

can be taken to be (01), (02), (03), (12), (13) and (23). In the Yang–Mills field theory, both
the gauge field tensor and the gauge potential can be rewritten as the linear combinations of the
gauge group generators (T i)ab, that is, we can have Fμν

ab = F i
μν(T

i)ab and Aμ
ab = Ai

μ(T i)ab,
where a, b denote the matrix indices of the group generators, and i is the number index of the
group generators. Likewise, in the spin-connection gauge field theory of gravitation, both the
gravitational gauge field tensor (�̌μν)

rs and the spin connection (dynamical variable) (Šμ)rs

can be expressed in terms of the Lorentz-group generators (Jpq)
rs in the tensor representation,

i.e.,

(�̌μν)
rs = 1

2i
(�̌μν)

pq(Jpq)
rs, (Šμ)rs = 1

2i
(Šμ)pq(Jpq)

rs . (5)

This means that the coefficient (�̌μν)
pq/i can be used to construct the gravitational Lagrangian

density. According to the Yang–Mills field theory, the Lagrangian density, L, and the
action, S, must be the local gauge-group invariants quadratic in curvature, and the Lagrangian
density is −(1/4)F i

μνF
iμν . Following this rule, the possible candidate for the gravitational

Lagrangian density is −(1/4)(�̌μν/i)pq(�̌μν/i)pq . But it should be pointed out that (Šμ)pq

and (Šμ)qp actually correspond to the same spin-connection gauge field simply because of
the antisymmetry in p and q, i.e., (Šμ)pq = −(Šμ)qp. Therefore, (�̌μν)pq and (�̌μν)qp are
in fact the same gauge field strength. Thus, in the candidate −(1/4)(�̌μν/i)pq(�̌μν/i)pq for
the gravitational Lagrangian density, the contribution of the same gauge field strength has
been repeated in the summation over p, q. Thus, in order to avoid the double contributions
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of the same gauge field strength, the gravitational Lagrangian density should be written as
−(1/8)(�̌μν/i)pq(�̌μν/i)pq , which becomes −(1/8)(�̌μν)

pq(�̌μν)qp. Now we consider one
of such gauge invariants that are quadratic in curvature

S(1)
g =

∫ √−gL(1)
g d4x, L(1)

g = −1

8
(�̌μν)

pq(�̌μν)qp, (6)

where the curvature tensor (gauge field strength) takes the form

(�̌μν)
pq =

(
∂Šν

∂xμ
− ∂Šμ

∂xν
− i[Šμ, Šν]

)pq

. (7)

In order to derive the gauge field equation, we should first calculate the variation of the
gravitational Lagrangian density with respect to the spin connection (Šμ)pq :

δ
(√−gL(1)

g

) = −1

2

√−g(�̌μν)qp

(
∂δŠν

∂xμ
− iδ(ŠμŠν)

)pq

= 1

2

√−gDμ(�̌μν)qpδ(Šν)
pq + S.T., (8)

where S.T. denotes the surface term (total divergence term), which leads to a surface integral,
using the four-dimensional version of Gauss’ theorem. The second local Lorentz gauge-group
invariant that is quadratic in curvature (scalar curvature) is of the form

S(2)
g =

∫ √−gL(2)
g d4x, L(2)

g = −1

8

(
ϑμ

r(�̌μν)
rsϑν

s

)2
, (9)

where ϑμ
r(�̌μν)

rsϑν
s = iϑμ

r(ϑ
αrRαβμνϑ

βs)ϑν
s (this scalar equals iR). It should be noted

that there is not such a counterpart (or analogue) in the Lagrangian of the conventional Yang–
Mills gauge theory. However, it deserves consideration since it is really a gauge invariant
quantity quadratic in curvature. The variation of the second local Lorentz gauge-group
invariant for the gravitational Lagrangian density is given by

δ
(√−gL(2)

g

) = −1

4
i
√−gR

(
ϑμ

rϑ
ν
s

)
δ

(
∂Šν

∂xμ
− ∂Šμ

∂xν
− i[Šμ, Šν]

)rs

= −1

4
i
√−gR

(
ϑμ

rϑ
ν
s − ϑν

rϑ
μ

s

) [
∂δ(Šν)

rs

∂xμ
− iδ((Šμ)r t (Šν)

ts)

]

= 1

2
(C + D). (10)

Here, the term C is

C = −1

2
i
√−gR

(
ϑμ

rϑ
ν
s − ϑν

rϑ
μ

s

)∂δ(Šν)
rs

∂xμ

= i
√−g∇μ

[
1

2
R

(
ϑμ

rϑ
ν
s − ϑν

rϑ
μ

s

)]
δ(Šν)

rs + S.T.

= i
1

2

√−g(∂μR)
(
ϑμ

rϑ
ν
s − ϑν

rϑ
μ

s

)
δ(Šν)

rs

+
√−gR

(
ϑμ

tϑ
ν
s − ϑν

tϑ
μ

s

)
(Šμ)t rδ(Šν)

rs + S.T., (11)

where the relations Dμϑμ
r = ∇μϑμ

r − i(Šμ)r
tϑμ

t = 0,Dμϑν
s = ∇μϑν

s − i(Šμ)s
tϑν

t = 0
and the property of antisymmetry of ϑα

sϑ
β

r − ϑα
rϑ

β
s in indices r, s have been applied. The

term D in (10) is given by

D = − 1
2

√−gR
(
ϑμ

rϑ
ν
s − ϑν

rϑ
μ

s

)
δ
(
(Šμ)r t (Šν)

ts
)

= −√−gR
(
ϑμ

tϑ
ν
s − ϑν

tϑ
μ

s

)
(Šμ)t rδ(Šν)

rs . (12)
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Obviously, D and the second term of the result in (11) exactly cancel, and the only retained
terms are the first term of the result in (11) and the surface term. Therefore, one can arrive at

δ
(√−gL(2)

g

) = i
1

4

√−g(∂μR)
(
ϑμ

rϑ
ν
s − ϑν

rϑ
μ

s

)
δ(Šν)

rs + S.T.

= i

2

√−gDμ

[
1

2
R

(
ϑμ

rϑ
ν
s − ϑν

rϑ
μ

s

)]
δ(Šν)

rs + S.T., (13)

where Dμer
μ = 0 and Dμes

ν = 0 have been substituted.
Hence, the variation of the two invariants constructed for the gravitational action is

δ
(
S(1)

g + S(2)
g

) = 1

2

∫ √−g

{
Dμ(�̌μν)sr + iDμ

[
1

2
R

(
ϑμ

rϑ
ν
s − ϑν

rϑ
μ

s

)]}
δ(Šν)

rs d4x.

(14)

If we define a quantity that is antisymmetric in both Greek and Latin indices as follows:

(Y̌ μν)qp = i

2

(
ϑμ

qϑ
ν
p − ϑμ

pϑν
q

)
R, (15)

then the variation (14) becomes

δ
(
S(1)

g + S(2)
g

) = 1

2

∫ √−g{Dμ(�̌μν)qp − Dμ(Y̌ μν)qp}δ(Šν)
pq d4x. (16)

We shall discuss the gravitational action Sg = S(1)
g + S(2)

g : (i) obviously, it is a higher
derivative gravity of metric (but quadratic in both spin connection and curvature). In the
literature, there were many references which considered the four-derivative gravity (where the
dynamical variable is the metric, however) [16]. But in our Yang–Mills formulation of gravity,
the dynamical variable is the spin connection instead; (ii) there is a third candidate that is also
quadratic in curvature, i.e., gμνϑβt (�̌νβ)tr (�̌μα)rsϑα

s , for constructing the Lagrangian and
action. This term can be expressed in terms of the other two candidates (L(1)

g and L(2)
g ) because

of the Gauss–Bonnet relation, so that we shall not take it into consideration in this paper (it
can be demonstrated that the spin-connection gauge theory based on the gravitational action
S(1)

g + S(2)
g is self-consistent for achieving the Einstein field equation).

So far, we have focused on deriving the variation of the gravitational action whose
fundamental dynamical variable is the spin-affine connection. We next show that the Einstein
tensor will appear in the variation of S(1)

g + S(2)
g . With the help of (�̌μν)qp = iϑα

qRαβ
μνϑβ

p,
one can have

Dμ(�̌μν)qp = iϑα
q

(∇μRαβ
μν

)
ϑβ

p = iϑα
q

(∇αRβ
ν − ∇βRα

ν
)
ϑβ

p. (17)

By using the definition of (Y̌ μν)qp in (15), one can obtain

−Dμ(Y̌ μν)qpδ(Šν)
pq = −i 1

2

[∇α

(
gβ

νR
) − ∇β

(
gα

νR
)]

ϑβ
pϑα

qδ(Šν)
pq . (18)

By using the results of (17) and (18), we find that the variation of the purely gravitational
Lagrangian density appearing in (16) is given by

{Dμ(�̌μν)qp − Dμ(Y̌ μν)qp}δ(Šν)
pq

= iϑα
q

[∇α

(
Rβ

ν − 1
2gβ

νR
) − ∇β

(
Rα

ν − 1
2gα

νR
)]

ϑβ
pδ(Šν)

pq . (19)

Thus, the variation in (16) can be rewritten as

δSg = i

2

∫ (∇αGβ
ν − ∇βGα

ν
)
ϑα

qϑ
β

pδ(Šν)
pq

√−g d4x, (20)

where the Einstein tensor Gβ
ν,Gα

ν has been derived in the variation of the purely gravitational
action Sg with respect to the spin-affine connection (Šν)

pq . This is an alternative way to get
the Einstein tensor, where the metric tensor is no longer a fundamental dynamical variable.

6
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It should be noted that the vacuum field equation of gravitation obtained from variation
(20) is given by a zero tensor ∇αGβ

ν − ∇βGα
ν , and then the numbers of the equations are

different between ∇αGβ
ν −∇βGα

ν = 0 and the vacuum Einstein equation Gβ
ν = 0 (thus, they

are not equivalent). We point out that this problem is related close to the so-called ‘Stephenson–
Kilmister–Yang equation’. In the literature, Stephenson, Kilmister and Yang independently
suggested a new gravitational field equation known as the Stephenson–Kilmister–Yang (SKY)
equation, where the Christoffel symbol (Levi–Civita connection) serves as a non-Abelian
gauge field [17–20]. In general, the source-free SKY field equation can be written as
∇μRμ

ναβ = 0, or equivalently in the form ∇αRβν − ∇βRαν = 0, which is also a third-
order differential equation of metric. It can be readily verified that the Einstein vacuum
field equation has already been involved in the SKY field equation. However, the SKY
equation has some other new solutions, which were viewed as unphysical solutions [21]. It
was suggested that the SKY equation should be supplemented by further restrictions on the
class of allowable spacetime in order to rule out the so-called unphysical solutions [21] (e.g.,
the geometrically degenerate cases of conformally flatness and decomposability of spacetime
involved in the SKY equation [19, 22], and the unphysical metrics that belong to these
degenerate classes [21]). The static, spherically symmetric solution to the SKY equation
showed that the solar experiments cannot yet distinguish between the SKY equation and the
Einstein vacuum gravitational equation [18]. We can also obtain the source-free SKY field
equation from variation (20). Though the SKY equation and the present spin-connection
gauge field equation may have some ‘unphysical’ solutions, yet they have already contained
all the solutions of the Einstein vacuum field equation. Thus, the spin-connection gauge field
equation (as well as the SKY equation) is of physical interest, since such formalisms are more
general than the Einstein field equation (i.e., the latter has already been involved in the former).

In this section, the gravitational Lagrangian density in the spin-connection formalism has
been suggested by following the principle of gauge field theory of Yang–Mills type, i.e., the
Lagrangian for the spin-connection gauge theory of gravitation based on both the gravitational
gauge field strength (curvature) and the local Lorentz symmetry has been constructed. In the
sections that follow, we shall suggest a formalism for treating the coupling of gravitational
field to matter by applying the gauge approach, and then evaluate the variation of the action
of the matter field involved in the spin-connection gravitational gauge interaction.

3. Functional integration for complex scalar fields and heavy coupling fields

It can be readily verified that the variation of the Lagrangian density, Lϕ , of a scalar matter field
with respect to the spin connection vanishes, if Lϕ is a bilinear form, such as Lϕ = L(ϕ, ∂μϕ)

(in this paper, we are concerned with only the scalar matter field as the gravitational source).
In other words, according to the variational principle, Lϕ cannot provide the gravitational
field equation with a source term (only for the vector and spinor fields can the Lagrangian
densities give rise to the source terms that have close relation to the spin of matter fields). In
order to obtain a source term related to the energy–momentum tensor of the matter field, a
possible mechanism is that an extra coupling field, φ, would be needed in order to result in
a nonzero variation for the coupling of the scalar matter field to the spin connection. Since
there are no experimental evidences for the existence of this additional coupling field in
low-energy gravitational interactions, the present coupling field (should such exist) might be
very heavy, and only in very high-energy gravitational processes can it exhibit its existence
(or presence). Thus, such a coupling field can also be referred to as ‘heavy gravitational
mediator’ or ‘heavy gravitation-mediating particle’ (an intermediary particle that mediates
the gravitational interaction between the matter field and the spin-connection gauge field).

7
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We shall now present the Lagrangian densities of the matter field and the heavy intermediate
coupling field, and then use the path integral approach in order to obtain a low-energy effective
Lagrangian (for the matter field as well as its coupling to the gravity).

The Lagrangian densities of the matter field (say, the complex scalar fields ϕ∗, ϕ) and the
heavy intermediate coupling fields φ∗, φ are given by

Lϕ = ∂μϕ∗∂μϕ − m2ϕ∗ϕ,

Lφ = ∂μφ∗∂μφ − m2
Gφ∗φ,

Lϕ−φ = ξ(∂μφ∗∂μϕ − m2φ∗ϕ) + ξ ∗(∂μφ∂μϕ∗ − m2φϕ∗)
= ξφ∗J + ξ ∗φJ ∗ + S.T., (21)

where the interaction Lagrangian density Lϕ−φ is constructed for the ϕ–φ coupling. Here,
J = −(∇μ∂μϕ + m2ϕ) and J ∗ = −(∇μ∂μϕ∗ + m2ϕ∗). S.T. denotes the surface term
(divergence term) for the present interaction Lagrangian density Lϕ−φ . Apparently, ξ and its
complex conjugate ξ ∗ are the dimensionless coupling constants. It should be emphasized that
there are no coupling constants that have nonzero dimension.

The generating functional (the transition amplitude from vacuum to vacuum) for both the
heavy intermediate coupling fields φ∗, φ and the matter fields ϕ∗, ϕ in the functional integral
approach is defined as

Z(φϕ) =
∫

[Dϕ∗][Dϕ][Dφ∗][Dφ] exp

{
−i

∫ √−g d4x[−Lφ − ξφ∗J − ξ ∗φJ ∗ − Lϕ]

}
.

(22)

The appearance of Z(φϕ) can be explicitly expressed via the transformations φ → φ+φ0, φ
∗ →

φ∗ + φ∗
0 . Using these transformations, one can rewrite the Lagrangian density of the

heavy coupling fields, e.g., −Lφ = 1
2φ∗ (

� + m2
G

)
φ + 1

2φ
(
� + m2

G

)
φ∗ + φ∗ (

� + m2
G

)
φ0 +

φ
(
� + m2

G

)
φ∗

0 + 1
2φ∗

0

(
� + m2

G

)
φ0 + 1

2φ0
(
� + m2

G

)
φ∗

0 + S.T., and then the integrand in the
exponential factor of (22) becomes

−Lφ − ξφ∗J − ξ ∗φJ ∗ → 1
2φ∗ (

� + m2
G − iε

)
φ + 1

2φ
(
� + m2

G + iε
)
φ∗ + S.T.

+ φ∗ (
� + m2

G − iε
)
φ0 + 1

2φ∗
0

(
� + m2

G − iε
)
φ0 − ξφ∗J − ξφ∗

0J

+ φ
(
� + m2

G + iε
)
φ∗

0 + 1
2φ0

(
� + m2

G + iε
)
φ∗

0 − ξ ∗φJ ∗ − ξ ∗φ0J
∗. (23)

Here ±iε terms are introduced in order to dictate the path of integration round the poles
at the energy that obeys kμkμ = m2

G (i.e., to ensure the vacuum-to-vacuum boundary
conditions), and this makes the functional integration (22) well defined [23, 24]. Let
us now define two equations for φ0(x) and φ∗

0 (x):
(
� + m2

G − iε
)
φ0(x) = ξJ (x) and(

� + m2
G + iε

)
φ∗

0 (x) = ξ ∗J ∗(x). Then the solutions φ0(x) and φ∗
0 (x) to these two equations

are given by

φ0(x) = −ξ

∫
�F(x − y)J (y)

√
−g(y) d4y,

φ∗
0 (x) = −ξ ∗

∫
�∗

F(x − y)J ∗(y)
√

−g(y) d4y,

(24)

where the Feynman propagators �F(x − y),�∗
F(x − y) of the heavy coupling fields (complex

fields) agree with(
�x + m2

G − iε
)
�F(x − y) = −δ4(x − y),(

�x + m2
G + iε

)
�∗

F(x − y) = −δ4(x − y).
(25)

8
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Here, δ4(x − y) function satisfies the relations:
∫

δ4(x − y)
√−g(y) d4y = 1 and∫

J (y)δ4(x − y)
√−g(y) d4y = J (x). Therefore, the result in equation (23) can be rewritten

as

−Lφ − ξφ∗J − ξ ∗φJ ∗

→ 1

2
φ∗ (

� + m2
G − iε

)
φ +

1

2
φ

(
� + m2

G + iε
)
φ∗ − 1

2
ξφ∗

0J − 1

2
ξ ∗φ0J

∗ + S.T.

= 1

2
φ∗ (

� + m2
G − iε

)
φ +

1

2
φ

(
� + m2

G + iε
)
φ∗ + S.T.

+
ξ ∗ξ
2

∫
[J ∗(x)�F(x − y)J (y) + J (x)�∗

F(x − y)J ∗(y)]
√

−g(y) d4y. (26)

The explicit expression in (26) can then be used to calculate the functional integration (22).
The generating functional Z(φϕ) can be separable, i.e., Z(φϕ) = Z(φ)Z(ϕ). With the help

of expression (26), one can obtain

Z(φ) =
∫

[Dφ∗][Dφ] exp

{
−i

∫ √
−g(x) d4x

[
1

2
φ∗ (

� + m2
G − iε

)
φ

+
1

2
φ

(
� + m2

G + iε
)
φ∗

]}
, (27)

Z(ϕ) =
∫

[Dϕ∗][Dϕ] exp

{
i
∫ √

−g(x) d4x[Lϕ(x) + Lint(x)]

}
,

where the Lagrangian density of the low-energy interaction mediated by the heavy coupling
fields is given by

Lint = −ξ ∗ξ
2

∫
[J ∗(x)�F(x − y)J (y) + J (x)�∗

F(x − y)J ∗(y)]
√

−g(y) d4y. (28)

This is a nonlocal functional for the scalar matter fields (after integrating the heavy coupling
fields φ∗, φ in the functional integration). At present, however, it is the low-energy case that
is of much interest to us, since it can have a close relation to the Einstein field equation.
For this reason, in what follows we shall consider the low-energy propagators of the heavy
intermediate coupling fields φ∗, φ.

By using the general coordinate transformation g′
αβ = ∂xμ

∂x ′α gμν
∂xν

∂x ′β , one can obtain the

metric determinant g′ = ∣∣ ∂x
∂x ′

∣∣2
g, i.e.,

√−g′ = ∣∣ ∂x
∂x ′

∣∣√−g. We define the volume element
in the phase space as follows: d4x = dx0 dx1 dx2 dx3, d4k = dk0 dk1 dk2 dk3. Since
dx ′μ = ∂x ′μ

∂xν dxν, dk′
μ = ∂xν

∂x ′μ dkν , we can have
√−g′ d4x ′ = √−g d4x and d4k′/

√−g′ =
d4k/

√−g, and the invariant phase-space volume element d4k′ d4x ′ = d4k d4x. By using
the Fourier transformation, we have 1 = (1/2π)4

∫
exp

[−i
∫

kq(dxq − dyq)
]

d4k d4y =
(1/2π)4

∫
exp

[−i
∫

kμ(dxμ − dyμ)
]

d4k d4y, which can be rewritten as 1 = ∫
δ4(x −

y)
√−g(y) d4y. Thus, the δ4(x − y) function in the present scenario is given by

δ4(x − y) = 1

(2π)4

1√−g(y)

∫
d4k exp

[
−i

∫
kμ(dxμ − dyμ)

]
. (29)

Let us now look at the low-energy Taylor series expansion of �F(x − y). With the aid of
equations (25) and (29), the Feynman propagator of the heavy coupling field φ is of the form

�F(x − y) = 1

(2π)4

1√−g(y)

∫
d4k

exp
[−i

∫
kμ(dxμ − dyμ)

]
k2 − m2

G + iε
. (30)

Here, we have assumed that kμkμ is independent of the coordinate and ∇μkμ = 0, which are
naturally the covariant generalizations of the results in the flat-spacetime quantum field theory.

9
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In the case of low-energy gravitational interaction, �F(x − y) can become

�F(x − y) = − 1

m2
G

1

(2π)4

1√−g(y)

∫
d4k

exp
[−i

∫
kμ(dxμ − dyμ)

]
1 − k2+iε

m2
G

= − 1

m2
G

∞∑
n=0

1

(2π)4

1√−g(y)

∫
d4k

(
kνk

ν

m2
G

)n

exp

[
−i

∫
kμ(dxμ − dyμ)

]
. (31)

Then, the appearance of equation (31) can be simplified, i.e., it can be rewritten as

�F(x − y) = − 1

m2
G

∞∑
n=0

(−�x

m2
G

)n 1

(2π)4

1√−g(y)

∫
d4k exp

[
−i

∫
kμ(dxμ − dyμ)

]

= − 1

m2
G

(
1 +

∞∑
n=1

On

)
δ4(x − y), (32)

where the high-order term On = (−�x

/
m2

G

)n
. Under the condition of the low-energy

interaction (below the energy scale |mG|), the terms
(−�x

/
m2

G

)n
can be ignored. Hence, the

leading term of �F(x − y) is given by

�F(x − y) 	 − 1

m2
G

δ4(x − y). (33)

We proceed to evaluate the effective interaction Lagrangian density. Substituting
the leading term (33) of the propagator of the heavy intermediate coupling field into
equation (28), one can obtain the interaction Lagrangian density (between the matter fields
and the spin-connection gravitational gauge field) up to the first order

Lint(x) = ξ ∗ξ
m2

G

J ∗(x)J (x). (34)

It is, however, no longer a nonlocal functional. Since we have integrated the heavy intermediate
coupling fields (φ∗, φ) in the vacuum–vacuum transition amplitude, as a result, such a kind
of heavy intermediate fields lead to a J–J type Lagrangian with a coupling coefficient that is
inversely proportional to the square of energy scale |mG| (the parameter ξ ∗ξ

/
m2

G in (34) is
expected to have a close relation to the Newtonian gravitational constant G). Apparently, the
low-energy effective Lagrangian density Lint is a modification to the Lagrangian density Lϕ

of the matter fields involved in the low-energy gravitational interaction.

4. The variation of the effective Lagrangian density

In this section, we shall concentrate our attention on the variational principle of the low-
energy Lint. From the point of view of the spin-connection gauge field theory of gravitation,
Lint governs the interaction between the matter fields and the spin-connection gauge field
(since the variation of Lint with respect to the spin connection is nonzero). We shall now
derive the nonzero variation of Lint. This will lead to the Einstein gravitational field equation,
which is in fact a first-integral solution to the low-energy spin-connection gauge field equation.

In the expression for J ∗J , there is a term ∇μ∂μϕ∗∇ν∂
νϕ that deserves consideration

(other terms, such as m2(ϕ∗∇μ∂μϕ + ϕ∇μ∂μϕ∗), have zero variations with respect to the
spin-affine connection, and can be ignored). This term can be rewritten as ∇μ∂μϕ∗∇ν∂

νϕ =
Rμν∂μϕ∗∂νϕ + ∇μ∂νϕ

∗∇μ∂νϕ + S.T., where we have used the relation ∇μ∂νϕ = ∇ν∂μϕ (for
the case of torsion-free gravity). For convenience, in what follows we focus on treating the
following relation:

2∇μ∂μϕ∗∇ν∂
νϕ = Rμνπμν + 2∇μ∂νϕ

∗∇μ∂νϕ + S.T., (35)

10
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where the symmetric tensor πμν = ∂μϕ∗∂νϕ + ∂νϕ
∗∂μϕ. In the vierbein formulation, the term

Rμνπμν in relation (35) can be rewritten as

Rμνπμν = (�̌μν)
pq(Čμν)qp, (36)

where the source tensor (Čμν)qp of the present matter fields (complex scalar fields ϕ∗, ϕ) is
defined by

(Čμν)qp = i

4

[(
ϑμ

qπ
ν
p − ϑν

qπ
μ

p

) − (
ϑμ

pπν
q − ϑν

pπμ
q

)]
. (37)

Then the variation of the first term on the right-handed side of equation (35) is given by

δ(
√−gRμνπμν) = −2

√−gDμ(Čμν)qpδ(Šν)
pq + S.T.

= i

2

√−g
(∇βπα

ν − ∇απβ
ν
)
ϑα

qϑ
β

pδ(Šν)
pq

+
i

2

√−g
(
gα

ν∇μπμ
β − gβ

ν∇μπμ
α

)
ϑα

qϑ
β

pδ(Šν)
pq + S.T., (38)

where the antisymmetry of (Čμν)qp in both μ, ν and q, p has been applied. It should be
emphasized that here the spin connection is not involved in the source tensor πμ

p, πμ
q, π

ν
p

and πν
q (i.e., the variation of these source tensors with respect to the spin connection is

zero). This is true for the zero-spin particle and the macroscopic matter whose spin can
be ignored. The variation of the second term on the right-handed side of equation (35)
is δ(2

√−gDν∂
pϕ∗Dν∂pϕ), where the spin-connection covariant derivatives are defined by:

Dν∂
pϕ∗ = ∂ν∂

pϕ∗ − i(Šν)
p

q∂
qϕ∗ and Dν∂pϕ = ∂ν∂pϕ − i(Šν)p

q∂qϕ. Thus, we have

δ(2
√−gDν∂

pϕ∗Dν∂pϕ) = 2
√−g[Dν∂pϕ(−i∂qϕ

∗) + Dν∂pϕ∗(−i∂qϕ)]δ(Šν)
pq

= −i
√−g[(∂αϕ∇ν∂βϕ∗ + ∂αϕ∗∇ν∂βϕ) − (∂βϕ∇ν∂αϕ∗ + ∂βϕ∗∇ν∂αϕ)]ϑα

qϑ
β

pδ(Šν)
pq

= −i
√−g[∇β(∂αϕ∗∂νϕ + ∂αϕ∂νϕ∗) − ∇α(∂βϕ∗∂νϕ + ∂βϕ∂νϕ∗)]ϑα

qϑ
β

pδ(Šν)
pq

= −i
√−g

(∇βπα
ν − ∇απβ

ν
)
ϑα

qϑ
β

pδ(Šν)
pq . (39)

Therefore, based on equations (38) and (39), the variation of (35) takes the form

δ[
√−g(Rμνπμν + 2∇μ∂νϕ

∗∇μ∂νϕ)]

= − i

2

√−g
[(∇βπα

ν − ∇απβ
ν
) − (

gα
ν∇μπμ

β − gβ
ν∇μπμ

α

)]
ϑα

qϑ
β

pδ(Šν)
pq + S.T.

= − i

2

√−g
[(∇βτα

ν− ∇ατβ
ν
)− (

gα
ν∇μτμ

β− gβ
ν∇μτμ

α

)]
ϑα

qϑ
β

pδ(Šν)
pq + S.T., (40)

where τα
ν = πα

ν − gα
νLϕ and τμ

β = πμ
β − gμ

βLϕ , which can be referred to as the ‘quasi
energy–momentum tensors’ of the matter fields. It should be emphasized that the real energy–
momentum tensors, such as Tα

ν, T μ
β , can be derived via the Noether theorem applied to

Lϕ + Lint. The quasi energy–momentum tensors τα
ν and τμ

β are simply a part of the real
energy–momentum tensors Tα

ν and T μ
β , respectively.

We have so far focused on the variation of Lint. It should be noted that the appearance of
(40) can be simplified, if we take advantage of the property of the quasi energy–momentum
tensor τα

ν (i.e., its covariant divergence vanishes). By the aid of Lϕ = ∂μϕ∗∂μϕ − m2ϕ∗ϕ
and Lint = (

ξ ∗ξ
/
m2

G

)
(∇μ∂μϕ∗ + m2ϕ∗)(∇ν∂

νϕ + m2ϕ), one can obtain the equations of
motion of the matter fields ϕ∗, ϕ (in the low-energy field theory of gravitation), e.g.,
∇μ∂μϕ + m2ϕ = (

ξ ∗ξ
/
m2

G

)
(∇μ∂μ + m2)(∇ν∂

νϕ + m2ϕ). Obviously, the field equation
∇μ∂μϕ + m2ϕ = 0 can satisfy this equation of motion. In the above, we have defined a
quasi energy–momentum tensor τμν = ∂μϕ∗∂νϕ + ∂μϕ∂νϕ∗ − gμνLϕ for the matter fields
ϕ∗, ϕ. Thus, the covariant divergence of the present quasi energy–momentum tensor is
∇μτμν = (∇μ∂μϕ∗ + m2ϕ∗)∂νϕ + (∇μ∂μϕ + m2ϕ)∂νϕ∗ = 0. Hence, the terms ∇μτμ

β and

11
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∇μτμ
α in expression (40) vanish. Therefore, the simplified version for the variation of the

low-energy Lagrangian density (34) takes the form

δ(
√−gLint) = ξ ∗ξ

2m2
G

(
− i

2

) √−g
(∇βτα

ν − ∇ατβ
ν
)
ϑα

qϑ
β

pδ(Šν)
pq + S.T., (41)

which, in combination with variation (20) of the gravitational action, can be used to derive the
Einstein field equation (see the section that follows).

We next address the equation of motion of the heavy intermediate coupling field (in
the case of high energy |mG| that would be close to the Planck energy) as well as the
problem of its mass. According to the Lagrangian densities presented in equation (21), for
the high-energy processes (e.g., the interaction energy scale is close to the Planck energy),
the classical field equations of the matter field ϕ and the heavy coupling field φ are of the
form: ∇μ∂μϕ + m2ϕ = −ξ ∗(∇μ∂μφ + m2φ),∇μ∂μφ + m2

Gφ = −ξ(∇μ∂μϕ + m2ϕ). By
substituting the first equation into the second one, one can show that the field equation of the
heavy coupling field φ is ∇μ∂μφ + m2

Gφ = ξ ∗ξ(∇μ∂μφ + m2φ), which can be rewritten as

∇μ∂μφ +

(
m2

G − ξ ∗ξm2

1 − ξ ∗ξ

)
φ = 0. (42)

Here, the square of mass reads

M2
G = m2

G − ξ ∗ξm2

1 − ξ ∗ξ
. (43)

In the following section, we shall present an expression for the gravitational constant G in terms
of the mass, MG, of the heavy intermediate coupling field, and indicate that the gravitational
constant is in fact the low-energy propagator of the heavy coupling field.

5. The low-energy gravitational field equation and the gravitational constant

Now we are in a position to consider the total variations of matter and gravitational fields. It is
possible, in fact, to demonstrate that the Einstein field equation has already been involved in
the framework of spin-connection gravitational gauge field. With the help of equations (20)
and (41), one can obtain

δ(Sg + Seff[ϕ
∗, ϕ])

= i

2

∫ √−g d4x
[∇α

(
Gβ

ν − κτβ
ν
) − ∇β

(
Gα

ν − κτα
ν
)]

ϑα
qϑ

β
pδ(Šν)

pq, (44)

where the low-energy gravitational coupling constant κ = −ξ ∗ξ/2m2
G. It is necessary to

discuss the relation between the low-energy gravitational coupling constant κ and the mass
of the heavy intermediate coupling field. As the mass m of the matter fields is small, it can
be ignored in equation (43). For the present, there are clearly no experimental evidences
for the values of the dimensionless coupling constants ξ, ξ ∗. If the gravitation dominates in
the interactions of high-energy processes (it is believed that the gravitational interaction in
high-energy processes close to the Planck energy scale would be strong. The gravitation in
the low-energy case appears very weak simply because the intermediate coupling fields φ∗, φ
are too heavy), as a tentative analysis, we can suppose that ξ ∗ξ 
 1, and then we can have

κ = 1

2M2
G

. (45)
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Then, it is easy to obtain the relation between the mass of the heavy coupling field and the
Newtonian gravitational constant G. It is apparent, for example, that one can get a first-integral
solution

Rβ
ν − 1

2gβ
νR − κτβ

ν = �gβ
ν, (46)

from variation (44). Here, � denotes an integration constant, which serves as an effective
cosmological constant. Thus, we obtain the Einstein gravitational field equation as a first-
integral solution of the spin-connection Yang–Mills type gauge field theory. According to the
Einstein field equation, the low-energy coupling constant κ = 8πG (in the unit of h̄ = c = 1),
and then it follows from equation (45) that the gravitational constant G is given by

G = 1

16πM2
G

, (47)

i.e., the physical essence of the Newtonian gravitational constant has a close relation to the low-
energy propagator of the heavy intermediate coupling field involved in gravitational processes.
As is well known, the Planck mass MP = √

1/G. Then it follows from relation (47) that the
mass of the heavy intermediate coupling field φ is

MG = MP

4
√

π
. (48)

This means that the mass of the heavy intermediate coupling field φ is close to the Planck
mass.

In the above, we did not take account of the cosmological constant term in the Lagrangian
density. If the cosmological constant term is taken into consideration, the spin-connection
gauge theory would lead to a different route for looking at the cosmological constant problem
from new aspects. As has been pointed out, τβ

ν and τα
ν in equations (40), (41) and (44) denote

the quasi energy–momentum tensors of the matter field (complex scalar fields ϕ∗, ϕ). In a
natural generalization to equations (41) and (44), the contribution of quantum-vacuum energy
density � can also be included, i.e., τβ

ν → τβ
ν + �gβ

ν, τα
ν → τα

ν + �gα
ν , where � = λ/κ

(λ denotes the cosmological constant resulting from the quantum vacuum fluctuation). It is very
interesting that the quantum-vacuum energy actually makes no contributions to gravitation,
since the covariant derivatives of �gβ

ν and �gα
ν in (44) vanish. This, therefore, implies

that the cosmological constant in the Yang–Mills type gravity theory, where the spin-affine
connection becomes the dynamical variable of the local Lorentz-group gauge field, may
have a different behaviour compared with that in GR. This would, unavoidably, change our
understandings about the physical meanings and the roles of the cosmological constant in
gravitational interactions.

6. Discussion of the cosmological constant in the framework of spin-connection

gauge theory

Recently, a number of increasing evidences (e.g. measurements of the cosmic microwave
background anisotropy, observations of the large-scale spacetime structure, and searches
for type Ia supernovae [4]) have suggested that most of the energy density of the universe
consists of matter that can be described by the cosmological constant term in the Einstein field
equation. There may be two candidates for interpreting the origin of the cosmological constant,
i.e., the quantum vacuum zero-point fluctuation energy and the dark energy (quintessence)
[25, 26], which can exhibit negative pressure causing the cosmic expansion to accelerate.
In an attempt to explain the accelerated expansion of the universe on the basis of GR and
modern cosmology (the standard Friedmann–Robertson–Walker cosmology) [4], we meet,
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however, with difficulties arising from the cosmological constant problem [27]. There are
some mysteries concerning the cosmological constant, for example, why does the very large
(almost divergent) quantum vacuum zero-point energy density make no contributions to the
observed cosmological constant, why is the observed cosmological constant nonzero but very
small, and why does it take a value that is close to the critical energy density of the universe
at present epoch? All these mysteries have puzzled physicists in the literature [27]. Take
the vacuum fluctuation energy for example, the calculated quantum vacuum energy density is
anomalously larger than the observed cosmological constant (close to the critical density) by
even more than 120 orders of magnitude, i.e. the theoretical value of the cosmological constant
(say, λ) caused by the quantum vacuum energy is surprisingly too large, while the experimental
value of the cosmological constant (say, �) is surprisingly too small: specifically, λ resulting
from the quantum vacuum contribution is proportional to 1

/
L2

P with Lp being the Planck
length (LP 	 10−35 m); the observed � is proportional to 1

/
L2

U with LU being the cosmic
length scale (the radius of the universe, LU 	 1026 m). Thus, the ratio of the calculated λ to
the observed � is: λ/� 	 (LU/LP)

2, which is more than 10120. Although there would be
an intrinsic bare cosmological constant that can eliminate λ, and the difference (the effective
cosmological constant) would be expected to be close to the observed cosmological constant,
yet we cannot accept such a surprising mechanism (fine tuning mechanism) in which the
theoretical cosmological constant can be exactly cancelled and hence precisely adjusted by
the bare cosmological constant by more than 120 orders of magnitude. Though a number of
authors suggested many theories, including the scheme of suggesting new matter states such
as the superconductivity of gravitomagnetic matter (a perfect fluid for exactly eliminating the
divergent cosmological constant) [28–30], to interpret the nonzero but small cosmological
constant [27], yet no satisfactory mechanisms have been widely accepted.

In the present spin-connection gauge field theory (in the vierbein formulation), the
cosmological constant term appears as the spin-connection covariant derivative of the following
antisymmetric tensor (antisymmetric in both the indices μ, ν and p, q)

(λμν)qp ≡ i

2
λ

(
ϑμ

qϑ
ν
p − ϑμ

pϑν
q

)
. (49)

Obviously, the spin-connection covariant derivative of (λμν)qp vanishes, i.e., Dμ(λμν)qp ≡ 0,
and hence the cosmological term (λμν)qp contributes nothing to the gravitation. This result can
be interpreted in an alternative way, where the metric formulation is employed: specifically,
the cosmological constant term (of the present spin-connection gravitational gauge theory) in
the formulation of metric appears as the Levi–Civita covariant derivatives of �gβ

ν and �gα
ν .

We shall point out this scheme in more detail. It can be shown that the Lagrangian density
of the cosmological constant term in the spin-connection gauge theory is proportional to the
scalar curvature, e.g., Lλ = λR/2, which can be rewritten as Lλ = (�̌μν)

pq(λμν)qp/2. As
the spin connection is (Šν)

pq = iϑα
p∇νϑ

αq , the variation with respect to (Šν)
pq would be

equivalent to the variation with respect to the covariant-derivative operator ∇ν . There is a
useful variational rule for a quantity such as (�̌μν)

pq(χμν)qp

δ(
√−g(�̌μν)

pq(χμν)qp) = −2
√−gDμ(χμν)qpδ(Šν)

pq + S.T., (50)

where the spin-connection gauge field strength (�̌μν)
pq is expressed in terms of the spin

connection, while the tensor (χμν)qp does not contain the spin connection. If (χμν)qp is a
function of the spin connection, then the above formula can be generalized by calculating
the variation of (χμν)qp. Thus, the variation of the Lagrangian density of the cosmological
constant term is given by

δ(
√−gLλ) = −√−gDμ(λμν)qpδ(Šν)

pq + S.T.

= i

2

√−g
[∇β

(
λgα

ν
) − ∇α

(
λgβ

ν
)]

ϑα
qϑ

β
pδ(Šν)

pq + S.T., (51)
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where λ is taken to be − (
ξ ∗ξ

/
2m2

G

)
� according to the relations κ = −ξ ∗ξ

/
2m2

G and � = λ/κ

that have been used in the preceding section. It follows from equations (44) and (51) that the
gravitational field equation (containing the contribution of quantum vacuum energy) in the
spin-connection formalism is of the form

∇α

[
Gβ

ν − κ
(
τβ

ν + �gβ
ν
)] − ∇β

[
Gα

ν − κ
(
τα

ν + �gα
ν
)] = 0. (52)

It is clearly seen that the quantum-vacuum energy density � actually makes no contributions to
the gravitation. This would be the reason for why the gravitational effect of the almost divergent
vacuum energy density has so far never been detected in the present observational cosmology
[4]. On the other hand, it should be emphasized that there appears an effective cosmological
constant � in the first-integral solution (46) to the third-order differential equation (52) of
the metric. We can interpret this problem alternatively in the vierbein formulation: from
equation (44), the spin-connection gravitational field equation in the vierbein formulation is

1

2
Dμ[(�̌μν)qp − (Y̌ μν)qp] = − i

2
κDμ

[(
ϑμ

pτ ν
q − ϑμ

qτ
ν
p

)
+

(
ϑν

pτμ
q − ϑν

qτ
μ

p

)]
. (53)

It is clearly seen that there is a spin-connection covariant divergence Dμ{·}μ on both left- and
right-handed sides of equation (53). Therefore, an integration constant term such as

(�μν)qp = i

2
�

(
ϑμ

qϑ
ν
p − ϑμ

pϑν
q

)
(54)

would appear in the first-integral solution, or equivalently, the term Dμ(�μν)qp (which equals
zero) can be placed on the right-handed side in equation (53). Thus, the first-integral solution
(46), i.e., the Einstein field equation that contains an equivalent cosmological term can be
obtained from the present gravitational gauge field theory. Obviously, the parameter �,
which is an integration constant, has nothing to do with the vacuum quantum fluctuation
energy. According to the current data of cosmological observations, the value of the equivalent
cosmological constant � is about λ/10120, which is close to the critical density of the universe.
We expect that the idea that we view the cosmological constant as an integration constant of
the first-integral solution (46) may naturally interpret the observed cosmological constant
value: specifically, the integration constant of the solutions (to the Yang–Mills type field
equation presented in this paper) depends on the practical physical conditions (such as the
initial condition and the boundary condition) of the cosmos, if we apply the solutions to the
dynamical equations of the cosmic evolution. Thus, the effective cosmological constant value
� is related closely to the cosmic boundary condition or the large-scale structure, which has a
characteristic scale LU. Thus, as a tentative analysis, the integration constant � should have
the order of magnitude of L2

U (for example, in the literature, Hoyle et al in their steady-state
model for an expanding universe obtained a cosmological constant that equals 3H 2/c2 [31],
where H denotes the Hubble constant. As is known, 3H 2/c2 has the same order of magnitude
as L2

U). This is the reason for why the observed cosmological constant has a nonzero but small
value, which is close to the critical density of the universe.

Thus, we have analysed and explicated the cosmological constant problem (including
some mysteries in connection with the quantum vacuum energy) by means of the spin-
connection gravitational gauge field theory. Although the present scheme for revealing the
physical origin and essence of the cosmological constant based on the spin-connection gauge
field theory needs to be further investigated, it would be promising to address the cosmological
constant problem, at least to provide a way to look at the anomalous characteristics of the
cosmological constant from new aspects.
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7. Concluding remarks

The affine connection and the fundamental dynamical variable in the Yang–Mills gauge theory
are the same quantity. In contrast, the connection (Levi–Civita connection) and the dynamical
variable (metric) in GR are not the same quantity. Thus, though GR is a kind of gauge
theory whose gauge group consists of four diffeomorphisms and, in the vierbein formulation,
of local frame rotations, yet it is not a Yang–Mills type gauge theory. It is possible, in
fact, to demonstrate that this asymmetry between GR and Yang–Mills gauge field theory
can be avoided if we introduce the formulation of vielbein (i.e., vierbein in four-dimensional
spacetime. The ‘vielbein’ in four dimensions is referred to as the ‘vierbein’) for gravity (e.g.,
in the formulation of vierbein, where the spin connection is written in terms of the vierbein
fields), one can identify the spin connection with the dynamical variable of a non-Abelian
gauge field with a local Lorentz-group symmetry, and GR can then be reformulated as a
gauge field theory of Yang–Mills type, where the gravitational Lagrangian (and hence the field
equation) can be constructed based on the local Lorentz-group gauge invariance with the spin
connection involved in the Yang–Mills covariant derivatives (in the vierbein formulation). In
order to construct a renormalizable gravity theory, to interpret why the Newtonian gravitational
constant has a dimension (or to interpret the physical origin of the Newtonian gravitational
constant), as well as to unify the gravitational field with the Yang–Mills field, we suggest
such a gravitational gauge field theory. We have shown that the Einstein equation of general
relativity is in fact one of the first-integral solutions to the field equation of spin-connection
Yang–Mills type gauge field. But it should be noted that in the conventional Yang–Mills
gauge field theory, there was no ‘vielbein’ defined. As the spin connection in the gravitational
gauge theory can be expressed in terms of the vierbein, one can, by analogy, conclude that the
so-called ‘Yang–Mills vielbein’ could also be defined, and the Yang–Mills connection can be
expressed in terms of this ‘Yang–Mills vielbein’ (i.e., the Yang–Mills gauge interaction can be
reformulated in the formulation of ‘Yang–Mills vielbein’). The present vielbein formulation
of the Yang–Mills gauge field would be published elsewhere.

It is interesting that an ‘equivalent cosmological constant’ that is actually an integration
constant appears in the first-integral solution to the spin-connection gravitational field equation.
It naturally plays a mathematically equivalent role of the cosmological constant. In other
words, our gauge field equation of Yang–Mills type can automatically exhibit such an
effective cosmological constant, though the quantum vacuum energy no longer makes any
contributions to the gravity. Obviously, the physical meaning of the present equivalent
(effective) cosmological constant is no longer the density of vacuum energy or dark energy.
Additionally, the idea that we view the cosmological constant as an integration constant may
naturally interpret the observed cosmological constant value (close to the critical density) and
would offer a solution to the cosmological constant problem, since the integration constant
depends on the realistic physical conditions (such as the boundary conditions, the initial
conditions and the large-scale structure of the gravitating system itself). To the best of our
knowledge, there are at present no mechanisms for treating the cosmological constant problem
based on the spin-connection gauge theory. Though we have provided new insights into the
physical origin and meanings of the cosmological constant, the mechanism for interpreting
the cosmological constant problem deserves further studies, since the present version is
preliminary and tentative, and needs more improvements.

For the present, the curvature-only gravity theory has been tested experimentally and
accepted as a standard gravity theory. However, the torsion-induced gravity theory deserves
consideration, at least for the theoretical aspects (e.g., recently, the gravity with torsion
receives increasingly more attentions from physicists [2, 32–35], and the possible detections
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of the torsion-based quantum interference and the torsion-induced gravitational interaction for
the test particle spin have been suggested [36–38]). It seems desirable to include a Yang–
Mills gauge field treatment for the gravity with torsion, i.e., the spin-connection gravitational
gauge theory needs to be generalized to the case of torsion. We hope that the work presented
here may stimulate an interest in this area, and would open a research route for looking at
the cosmological constant problem, the spin contribution to gravitation [39] as well as the
spin–torsion interaction [32].

Appendix. The generalization of the Lagrangian density of the ϕ–φ coupling

We have constructed a Lagrangian density in equation (21) for the ϕ–φ coupling as
Lϕ−φ = ξ(∂μφ∗∂μϕ − m2φ∗ϕ) + ξ ∗(∂μφ∂μϕ∗ − m2φϕ∗), where the coupling parameters
contain the mass square m2 of the complex scalar fields. This Lagrangian density can,
however, be generalized to the following form:

Lϕ−φ = ξ(∂μφ∗∂μϕ − μ2φ∗ϕ) + ξ ∗(∂μφ∂μϕ∗ − μ2φϕ∗), (A.1)

where we have replaced the special parameter m2 with an arbitrary μ2. Now this Lagrangian
density can be rewritten as Lϕ−φ = ξφ∗J + ξ ∗φJ ∗ + S.T., where J = −(∇μ∂μϕ + μ2ϕ) and
J ∗ = −(∇μ∂μϕ∗ + μ2ϕ∗).

For the low-energy gravitational interaction, we have defined the ‘quasi energy–
momentum tensors’ of the matter fields: τα

ν = πα
ν − gα

νLϕ, τμ
β = πμ

β − gμ
βLϕ .

But since now we have a generalized Lϕ−φ in (A.1), we can use τα
ν = πα

ν −
gα

νLcorr[ϕ∗, ϕ], τμ
β = πμ

β − gμ
βLcorr[ϕ∗, ϕ] instead to represent the ‘quasi energy–

momentum tensors’ of the matter fields, where Lcorr[ϕ∗, ϕ] = ∂μϕ∗∂μϕ − m2
corrϕ

∗ϕ. The
corrected m2

corr can be derived as follows: by the aid of Lϕ = ∂μϕ∗∂μϕ − m2ϕ∗ϕ
and Lint = (

ξ ∗ξ
/
m2

G

)
(∇μ∂μϕ∗ + μ2ϕ∗)(∇ν∂

νϕ + μ2ϕ), one can obtain the equations of
motion of the matter fields ϕ∗, ϕ (in the low-energy field theory of gravitation), e.g.,
∇μ∂μϕ +m2ϕ = (

ξ ∗ξ
/
m2

G

)
(∇μ∂μ +μ2)(∇ν∂

νϕ +μ2ϕ). We assume that ∇μ∂μϕ +m2
corrϕ = 0,

which can be rewritten as ∇μ∂μϕ +m2ϕ = (
m2 −m2

corr

)
ϕ and ∇μ∂μϕ +μ2ϕ = (

μ2 −m2
corr

)
ϕ.

Substitution of these two equations into the above equation of motion of the matter fields
yields m2 − m2

corr = (
ξ ∗ξ

/
m2

G

)(
μ2 − m2

corr

)2
. This can lead to the mass split of the matter

fields ϕ∗, ϕ

m2
corr = μ2 − m2

G

2ξ ∗ξ
±

√(
m2

G

2ξ ∗ξ

)2

+ (m2 − μ2)
m2

G

ξ ∗ξ
. (A.2)

Obviously, one of the roots, mcorr, would be reduced to m, if μ → m. This corresponds to the
special case that has already been presented in the paper.

The covariant divergence of the present quasi energy–momentum tensor τμν = ∂μϕ∗∂νϕ+
∂μϕ∂νϕ∗ − gμνLcorr[ϕ∗, ϕ] for the matter fields ϕ∗, ϕ is given by

∇μτμν = (∇μ∂μϕ∗ + m2
corrϕ

∗)∂νϕ +
(∇μ∂μϕ + m2

corrϕ
)
∂νϕ∗ = 0. (A.3)

Hence, the terms ∇μτμ
β and ∇μτμ

α in expression (40) vanish. This result plays a key role for
obtaining equation (41) and the Einstein field equation (there would be no such a first-integral
solution if ∇μτμ

β and ∇μτμ
α are nonzero).

Now we turn to the classical field equations of both the matter fields and the heavy
coupling field in high-energy processes. According to the Lagrangian density Lϕ,Lφ , and the
new Lϕ−φ presented in (A.1), one can arrive at the following field equations of both ϕ and φ in
the case of high-energy interaction: ∇μ∂μϕ + m2ϕ = −ξ ∗(∇μ∂μφ + μ2φ),∇μ∂μφ + m2

Gφ =
17
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−ξ(∇μ∂μϕ + μ2ϕ). It follows that the field equations of φ and ϕ agree with

∇μ∂μφ +

(
m2

G − ξ ∗ξμ2

1 − ξ ∗ξ

)
φ = − ξ

1 − ξ ∗ξ
(μ2 − m2)ϕ,

∇μ∂μϕ +

(
m2 − ξ ∗ξμ2

1 − ξ ∗ξ

)
ϕ = − ξ ∗

1 − ξ ∗ξ
(
μ2 − m2

G

)
φ.

(A.4)

The first equation (of φ field) would be reduced to equation (42), if the parameter μ → m.
In a word, the ϕ–φ coupling that has been considered in the preceding sections is in fact

a special case of the one presented in appendix.
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